Analytics
Measure business impact and performance of your AI applications with KPIs and OKRs that matter to stakeholders.
Overview
Analytics provides a framework for measuring, analyzing, and reporting on the business impact of your AI applications. It enables you to:
- Track key performance indicators (KPIs) for AI-driven processes
- Measure return on investment (ROI) of AI initiatives
- Compare performance across A/B tests and experiments
- Align technical metrics with business objectives (OKRs)
Features
- Business Metrics: Track KPIs that matter to stakeholders
- ROI Analysis: Calculate financial impact of AI investments
- Experiment Tracking: Compare performance across A/B tests
- OKR Alignment: Connect AI performance to business objectives
- Custom Dashboards: Create reports for different stakeholders
Usage
import { trackMetric, defineExperiment } from 'analytics.do'
// Define an A/B test experiment
const productRecommendationTest = defineExperiment({
name: 'product_recommendation_algorithm',
description: 'Test different recommendation algorithms',
variants: [
{ id: 'control', description: 'Current algorithm' },
{ id: 'collaborative', description: 'Collaborative filtering' },
{ id: 'content_based', description: 'Content-based filtering' },
],
metrics: {
primary: 'conversion_rate',
secondary: ['revenue_per_user', 'click_through_rate'],
},
})
// Track metrics for business KPIs
await trackMetric({
name: 'conversion',
value: 1,
metadata: {
userId,
productId,
revenue,
experimentId: 'product_recommendation_algorithm',
variant: 'collaborative',
},
})
// Update KPI dashboard aligned with business OKRs
await analytics.updateKpiDashboard({
metric: 'revenue_from_recommendations',
value: revenue,
dimensions: {
experiment: 'product_recommendation_algorithm',
variant: 'collaborative',
},
})
Last updated on