Skip to Content
Functions.do is released 🎉

Analytics

Measure business impact and performance of your AI applications with KPIs and OKRs that matter to stakeholders.

Overview

Analytics provides a framework for measuring, analyzing, and reporting on the business impact of your AI applications. It enables you to:

  • Track key performance indicators (KPIs) for AI-driven processes
  • Measure return on investment (ROI) of AI initiatives
  • Compare performance across A/B tests and experiments
  • Align technical metrics with business objectives (OKRs)

Features

  • Business Metrics: Track KPIs that matter to stakeholders
  • ROI Analysis: Calculate financial impact of AI investments
  • Experiment Tracking: Compare performance across A/B tests
  • OKR Alignment: Connect AI performance to business objectives
  • Custom Dashboards: Create reports for different stakeholders

Usage

import { trackMetric, defineExperiment } from 'analytics.do' // Define an A/B test experiment const productRecommendationTest = defineExperiment({ name: 'product_recommendation_algorithm', description: 'Test different recommendation algorithms', variants: [ { id: 'control', description: 'Current algorithm' }, { id: 'collaborative', description: 'Collaborative filtering' }, { id: 'content_based', description: 'Content-based filtering' }, ], metrics: { primary: 'conversion_rate', secondary: ['revenue_per_user', 'click_through_rate'], }, }) // Track metrics for business KPIs await trackMetric({ name: 'conversion', value: 1, metadata: { userId, productId, revenue, experimentId: 'product_recommendation_algorithm', variant: 'collaborative', }, }) // Update KPI dashboard aligned with business OKRs await analytics.updateKpiDashboard({ metric: 'revenue_from_recommendations', value: revenue, dimensions: { experiment: 'product_recommendation_algorithm', variant: 'collaborative', }, })
Last updated on